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ABSTRACT
Objective Active drug safety surveillance may be
enhanced by analysis of multiple observational
healthcare databases, including administrative claims
and electronic health records. The objective of this study
was to develop and evaluate a common data model
(CDM) enabling rapid, comparable, systematic analyses
across disparate observational data sources to identify
and evaluate the effects of medicines.
Design The CDM uses a person-centric design, with
attributes for demographics, drug exposures, and
condition occurrence. Drug eras, constructed to
represent periods of persistent drug use, are derived
from available elements from pharmacy dispensings,
prescriptions written, and other medication history.
Condition eras aggregate diagnoses that occur within
a single episode of care. Drugs and conditions from
source data are mapped to biomedical ontologies to
standardize terminologies and enable analyses of
higher-order effects.
Measurements The CDM was applied to two source
types: an administrative claims and an electronic medical
record database. Descriptive statistics were used to
evaluate transformation rules. Two case studies
demonstrate the ability of the CDM to enable standard
analyses across disparate sources: analyses of persons
exposed to rofecoxib and persons with an acute
myocardial infarction.
Results Over 43 million persons, with nearly 1 billion
drug exposures and 3.7 billion condition occurrences
from both databases were successfully transformed into
the CDM. An analysis routine applied to transformed
data from each database produced consistent,
comparable results.
Conclusion A CDM can normalize the structure and
content of disparate observational data, enabling
standardized analyses that are meaningfully comparable
when assessing the effects of medicines.

INTRODUCTION
Drug safety scientists have traditionally relied on
information from clinical trials and post-market
individual patient case reports of adverse drug
reactions to identify potential safety issues in
marketed medicinal products.1 More recently, data
mining methods have been applied to large collec-
tions of patient case reports to detect patterns
that may not be obvious by individual case review.2

The limitations of the analytic methods and the
current sources of safety information are well
documented.3e7 There is emerging interest in the

use of observational databases, including adminis-
trative claims and electronic medical records, to
augment post-approval drug safety surveillance
activities. However, data recorded in observational
databases were collected for purposes other than
drug safety research; administrative claims data
support insurance reimbursement processes, while
electronic medical records are aimed at supporting
clinical practice at the point of care. In addition,
differences between the data organization, format,
and terminologies used among individual observa-
tional data sources have historically made safety
analyses utilizing multiple observational data
sources time consuming and expensive, and
comparisons among results of studies utilizing
disparate databases difficult.
Recent drug safety initiatives have begun to

explore the use of a common data model (CDM) to
enable systematic analysis of observational data-
bases. The concept behind this approach is to
transform data contained within disparate data-
bases into a common format (data model), and
then perform systematic analyses using a library of
standard analytic routines that have been written
based on the common format. If the approach
proves successful, large numbers of records in
disparate data sources could be analyzed rapidly
and efficiently to identify and evaluate potential
drug safety signals. In this paper, we examine the
results of the transformation of two disparate,
observational databases into a CDM that was
specifically developed for the purpose of supporting
drug safety research. We evaluate the effects of the
transformation on the data itself, as well as
performance characteristics of the CDM for
supporting drug safety analyses.

BACKGROUND
Gaps in the current post-approval drug safety
system
In 2004, the highly visible recall of rofecoxib
focused the attention of the industry, public,
government, and press on the issue of drug safety.8

Subsequent drug safety issues and recalls have kept
the topic of drug safety in the public eye and have
highlighted well-documented shortcomings in the
current drug safety monitoring system. In a 2006
report, the Institute of Medicine provided an
assessment of the current system for evaluating
and ensuring drug safety post-approval. Among the
findings documented in this report are recommen-
dations for improvement of the current drug safety
system including the increased use of automated
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healthcare databases for formulation and testing of drug safety
hypotheses.3 In the following year, the US Congress passed the
Food and Drug Administration Amendments Act of 2007, which
in part, mandated the “.development of validated methods for
the establishment of a post-market risk identification and anal-
ysis system to link and analyze safety data from multiple
sources.”9 In May 2008, partially in response to the Institute of
Medicine report and Food and Drug Administration Amend-
ments Act, the United States Food and Drug Administration
(FDA) issued a report describing its intention to establish
a national, integrated, electronic system for monitoring medical
product safety using multiple, existing electronic medical record
systems and claims databases to augment the agency’s current
capability. The Sentinel Initiative was launched to instantiate
this vision.10 Related to this initiative, several organizations
have been established to focus on research into the use of
observational data for drug safety research, including the
Observational Medical Outcomes Partnership (OMOP).11

Interest in the use of observational data for drug safety
research is not limited to the United States; EU-ADR12 and
IMI-PROTECT13 are two European consortia currently working
on the development of an innovative computerized system
to detect safety signals in observational data to supplement
spontaneous reporting systems.

The observational data landscape
A large number of observational databases are already being
utilized for medical research and could potentially be imple-
mented as part of a national drug safety monitoring system.
De-identified patient claims, pharmacy, laboratory, and electronic
medical records are available for license through vendors such as
GE Healthcare, IMS Health, Thomson Reuters, and i3 Ingenix.
Large repositories of identifiable patient claims, pharmacy,
medical record, hospital, and laboratory data are owned and
curated by public, private, and not-for-profit managed healthcare
organizations such as Kaiser-Permanente, WellPoint, and United
Health. Although patient privacy issues make access to these
databases more difficult, many are routinely used for medical
research through collaborationswith the data owners. In addition,
government agencies such as the Veterans Administration and the
Department of Defense administer large repositories of patient
data for US veterans and service members; both of these agencies
routinely participate in clinical studies utilizing these databases.

The need for a CDM
The use of observational healthcare databases in support of drug
safety and health outcomes studies is not new.14 15 However,
disparate observational databases have different logical organi-
zations and physical formats, and the terminologies used to
describe the medicinal products and clinical conditions vary
from source to source. Therefore, data analyses performed in
support of these ad hoc safety studies are typically accomplished
by developing custom programs that conform to a specific
observational data format and incorporate source-specific
assumptions. These programs are time-consuming to develop
and validate, and cannot be systematically reproduced on other
observational data sources. In addition, transformation rules and
assumptions applied to the data are often embedded within
the programs and not clearly documented. This complicates the
interpretation of results for anyone not familiar with the
program code, and makes meaningful comparisons among
results from disparate databases more difficult.

As an example, consider the association between rofecoxib and
acutemyocardial infarctionmentioned previously. Rofecoxibwas

withdrawn from the US market in 2004 following intense eval-
uation of disparate information from clinical trials, spontaneous
adverse event reporting, and observational healthcare data-
bases.16e21 Many have cited the rofecoxib example when high-
lighting concerns about the current pharmacovigilance process
and the increasing need to establish a national active surveillance
system.5 8 22e24 Since 2002, dozens of observational database
studies have been published on the subject,25e35 covering a wide
array of different data sources utilizing a variety of study designs.
The results among these studies have varied significantly;
a meta-analysis of some observational studies highlighted the
heterogeneity in these results.36

While it should be expected that data sources will have unique
limitations with inherent bias that can influence results, a CDM
can be used to minimize variability and enable common inter-
pretation within the context of underlying source data. This is
accomplished by standardizing the data structure, creating one
set of transparent data transformation rules for each data source,
developing a common terminology to define exposures,
outcomes, and covariates, and establishing a common library of
analytic routines for such things as characterizing the popula-
tions, identifying new safety signals, and producing
drugeoutcome effect estimates.
A recent report developed for the FDA recommends the

adoption of a CDM for the Sentinel Initiative.37 In this report,
several conceptual data models are described, including:
encounter based patient-level, patient-level summary data, drug
and condition eras, and summary data models. The report
summarizes the ability of each of these models to meet the
Sentinel system needs based on the data content comprising
each model. However, it does not include operational informa-
tion regarding the process and effects of transforming source
data into each type of model nor performance characteristics of
each model for the subsequent support of drug safety research.
As part of ongoing research in this area, the OMOP has

recently published a detailed specification for a CDM38 39 that
includes characteristics of both the encounter based and drug
and condition era data models described in the FDA report.
Research into the transformation of data into the OMOP
Common Data Model and performance of different types of
analysis methods utilizing this model is currently underway.
Although there is a great deal of discussion and activity, little

has been published to date about the operational consequences
of utilizing a CDM to enable drug safety research.

MODEL DESCRIPTION
Overview
To accomplish the research described in this paper, we developed
a CDM designed to support drug safety research. Our CDM,
which is similar to the OMOP model, contains the basic data
elements required for drug safety analysis. Figure 1 describes the
CDM schema as an entity-relationship diagram; the remainder
of the paper provides details of the development and validation
of the model.
PHARMetrics Choice, a claims database from IMS Health and

the GE Commercial Data Set, a database of electronic medical
records from GE Healthcare, were selected for transformation
into our CDM and subsequent analysis. Both datasets contain
anonymized and de-identified person-level information from
2000 through 2008. Each database was first transformed into the
CDM format, and then the results were analyzed in two ways.
First, a series of descriptive statistics were produced on both the
raw and transformed data to better understand the effects of the
transformation process on the data itself. The second goal was
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to understand the performance characteristics of utilizing
a CDM for drug safety analyses. To accomplish this goal,
a program conforming to the CDM format was developed. This
program was executed on the transformed data from both
databases examining the results of two clinical cohorts: persons
who were exposed to the drug rofecoxib and persons with
a diagnosis of acute myocardial infarction.

CDM for drug safety
Person Timeline
The format of the CDM is person-centric, organizing the
healthcare encounters for each person into a ‘Person Timeline’ to
facilitate longitudinal analysis. Within the CDM, de-identified
information stored about each person includes a unique Person
Identifier and descriptive characteristics found within most
observational databases which may be important for drug safety
analysis. These characteristics include date of birth, gender, race,
and geographic region; the data model has been developed in
a way that additional characteristics can be added. For this
research, two types of healthcare encounters are recorded for
each person: exposure to medications and occurrences of
conditions, which are represented as ‘Drug Eras’ and ‘Condition
Eras’ and are associated with each person via the Person Identifier.

Drug Eras and Condition Eras
Drug Eras represent a span of time that a given person has been
persistently exposed to a given Drug Concept, which can include

a generic drug name (such as rofecoxib), a brand name (such as
Vioxx), or a drug class or group (such as Cox-2 inhibitors or
NSAIDs). Within the CDM, each Drug Era is represented by
a unique drug identifier and a start and end date, so that the
period of time of drug exposure for a drug can be calculated by
(Era enddEra start). The information stored about a Drug Era is
derived based on the data elements available for drug prescrip-
tions and medications contained within the source data. The
model takes into account the fact that recurring prescriptions for
the same product may actually represent one continuous period
of drug use. Independent prescriptions are combined into
a single Drug Era through the use of a persistence window, which
is the allowable span of time after a prescription is scheduled to
be completed within which another prescription of the same
drug needs to be filled in order to maintain persistence. This
persistence window accounts for such things as the logistics of
getting a new prescription refilled and the fact that many
patients are not 100% compliant in taking their medication
every day.
Condition Eras represent an episode of care for a given condi-

tion concept, which can include individual conditions such as
acute myocardial infarction, or groups of related conditions such
as ischemic coronary artery disorders. Within the CDM, each
Condition Era is also represented by a unique Condition Concept
and a start and end date so the period of time of the episode of
care for a condition can be calculated by (Era enddEra start).
The information stored about a particular Condition Era is

Figure 1 CDM schema.
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derived based on the data elements available for each diagnosis
healthcare encounter contained within the source data. Like
Drug Eras, Condition Eras can be aggregated using a persistence
window. In this case, a persistence window represents an
allowable span of time occurring between recorded diagnoses of
the same condition in order to maintain persistence of the
episode of care for that condition.

Figure 2 provides a schematic view of a Person Timeline,
including the creation of Drug and Condition Eras using
a persistence window.

Standardized Terminology Dictionary
The Person Timeline described above enables the standardization
of observational data into a format suitable for drug safety anal-
yses; however, it does not address standardization of the data
content itself. Drugs and conditions can be coded using various
source vocabularies across disparate observational databases. For
example, drugs may be recorded using NDC, GPI or Multilex,
while conditions may be documented as ICD-9, ICD-10,
SNOMED,MedDRA, READ-OXMIS, or any other local codes. In
addition, to fully enable robust querying, searching, and analysis
of observational data, it is desirable to have the capability of
aggregating related drugs and conditions for certain analyses. For
example, we may want to analyze the individual brand name
Vioxx, the generic name rofecoxib, or all products contained
within the drug groups Cox-2 inhibitors or NSAIDs. For condi-
tions we may want to analyze acute myocardial infarctions,
coronary artery disorders, or more broadly cardiac disorders.

ATerminology Dictionary provides the capability for drugs and
conditions represented within the source data to be mapped into
a standard set of hierarchical terminologies, enabling robust
analyses and making possible a common interpretation of
results.40 The CDM Terminology Dictionary was created by
storing the individual concepts from selected medical terminolo-
gies, as well as the hierarchical relationships among concepts,
within the CDM structure. Our Terminology Dictionary includes
a Drug Terminology based on the SNOMED-CT Drug and Medi-
cament hierarchy as well as a Condition Terminology based on the
MedDRA hierarchy. Creation of the Terminology Dictionary was
accomplished utilizing publicly available data and procedures
provided by the Unified Medical Language System (UMLS) from
theNational Library ofMedicine41 aswell as procedures developed
internally.42 43 The MedDRA was selected for inclusion in the
Terminology Dictionary as it is the current standard vocabulary
for adverse event reporting used by the FDA.44

Data transformation
The PHARMetrics and GE databases have different underlying
formats. In PHARMetrics, all administrative claims, including

pharmacy records and inpatient and outpatient medical claims
are captured in one large file; data within this file are differen-
tiated using a ‘type code’. The GE patient encounter data is
distributed across 15 tables, each representing a different aspect
of a patient encounter. While PHARMetrics captures diagnoses
using ICD-9 codes on medical claims, GE records conditions on
a problem list and maps conditions to corresponding ICD-9
diagnosis codes. Drug exposure can be inferred from PHAR-
Metrics using pharmacy dispensing information (coded in
NDC), while GE drug information is inferred from medication
history records and prescriptions written (as coded in GPI). The
process of transforming native data from each data source into
the CDM involves several steps which are illustrated in figure 3
and described in more detail below.

Extract data
The initial import transforms source data from the native
schemas into the general CDM format. The process for each
data source is similar and includes the following steps:
< Extract Person data for each unique Person
< Extract Drug Eras and Condition Eras for each Person,

including drug and condition identifiers as found within the
data source, an Era start date, and an Era end date

< Create Drug and Condition Reference files of all source-
specific, unique drugs and conditions. To uniquely identify
each drug, Product Identifiers are constructed consisting of the
Product name+Strength for each drug in the reference file. The
ICD-9 codes are used to uniquely identify each condition.
The extraction details for each data source are different due to

the differences in the organization and format of vendor data.
Source specific rules for transforming the diagnosis, medication,
and prescription data into the CDM are built into the extract
programs; development of these rules requires significant data
content expertise for each source dataset being transformed.

Map to Terminology Dictionary
The goal of this step is to map or annotate each of the drugs and
conditions found in the Drug and Condition Reference files to
the appropriate Concept in the Terminology Dictionary that
was previously created.
To map drug data, the drugs found within the source data

Drug Reference files are annotated to the appropriate SNOMED-
CT Drug Concepts found in the Terminology Dictionary. The
goal of the annotation is to associate each unique drug reference
found in the native source data with one or more Drug
Concepts. The fundamental approach for accomplishing the
annotation is to match the string representation of the product
names found in the Drug Reference file to product name Drug
Concepts in the Drug Hierarchy. Although string normalization
tools are available within the UMLS, the specific requirements of

Figure 3 Data transformation process.Figure 2 Schematic of the Person Timeline Common Data Model.
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this project necessitated the development of a string normalizer
which is tuned to the needs of a clinical drug vocabulary.43

To map condition data, the conditions found within the
source data Condition Reference files are annotated to the
MedDRA Condition Concepts in the Terminology Dictionary.
The process for annotating conditions is somewhat simpler
than for drugs, and the UMLS Metathesaurus is utilized to map
ICD-9 codes to MedDRA Preferred Term Condition Concepts
using equivalence between Concept Unique Identifiers found in
the Metathesaurus. The ICD-9 codes and MedDRA Preferred
Terms that have equivalent Concept Unique Identifiers are
assumed to refer to the same medical condition.42

Aggregate Drug and Condition Eras
At this point in the process, Person data from each observational
data source has been transformed into the Person Timeline
format including Drug and Condition Eras, and drug and
condition references found within the Person data have been
mapped to a common Terminology Dictionary. The final step in
the data transformation process is to aggregate Drug and
Condition Eras that occur within the allowable persistence
windows. During this process, Drug and Condition Eras that
represent the same Drug or Condition Concept from the
Terminology Dictionary are aggregated if the start of the second
Era occurs within 30 days of the end of first Era. Multiple Eras
can be merged into one using this method. Thirty days was
selected as the persistence widow for aggregation based on
a conservative approach that may be more appropriate for
chronic drugs and acute conditions; this value is an input
parameter which can be modified.

Consider the following example: a Condition Era representing
ICD-9 code 41001 (AMI ANTEROLATERAL WALL, INITIAL
EPISODE) would be aggregated to a Condition Era representing
ICD-9 code 41041 (AMI INFERIOR WALL, INITIAL EPISODE)
occurring within 30 days as both of these ICD-9 codes annotate
to the same Condition Concept, Acute Myocardial Infarction,
within the MedDRA hierarchy. However, a Condition Era
representing the ICD-9 code 412 (INFARCTION, MYOCARDIAL
OLD) would not be aggregated to either of the Condition Eras
above since ICD-9 code 412 annotates to a different Condition
Concept, Myocardial Infarction.

The end result of the aggregation process is that drugs and
conditions with the same Concept and occurring within 30 days
of each other are aggregated into one Era. When this process
is complete, the data from each database have been fully
transformed into the CDM format.

Load transformed data into a production database
The transformed data in the CDM format for each data source
are loaded into a commercial relational database as normalized
relational tables (figure 1 describes the CDM tables). A relational
structure was chosen due to the large size of the data and the
need for data access and execution efficiency. Data from each
source are not integrated, but maintained in separate, identical
table structures. After the relational tables have been successfully
loaded, the transformed data are ready for analysis.

Data transformation statistics
To assess the effect of the data transformation on the content
of the data, a variety of statistics were calculated at each step of
the data transformation process. From each native data source,
the overall number of persons, the number of persons with at
least one rofecoxib prescription or medication record, and the
number of persons with at least one diagnosis code representing
an acute myocardial infarction were counted.

To evaluate the performance of the drug and condition
mapping process, the number of unique drugs (by Product
Identifier) and Conditions (by ICD-9 code) within the Drug and
Condition Reference files produced for the native data sources,
as well as the total number of Drug and Condition Concepts
found within our Terminology Dictionary, were counted. Drug
Concepts include brand names, generic names, and drug groups
at all levels of the SNOMED-CT hierarchy, and Condition
Concepts include MedDRA Preferred Terms, High Level Terms,
High Level Groups, and System Organ Classes. These numbers
were used to calculate two metrics: Distinct Annotation Proportion
and Instance Annotation Proportion. The Distinct Annotation
Proportion is the proportion of unique drugs and conditions from
the Source Reference files that were successfully annotated to Drug
and Condition Concepts in the Terminology Dictionary. The
Instance Annotation proportion is the proportion of drug and
condition references found within the Person data that were
successfully annotated. For conditions, the proportion of
condition references that are ICD-9 E and V codes was also
calculated. Finally, the specific mapping results for Concepts
representing the drug rofecoxib and the condition acute myocardial
infarction were analyzed.
To understand the consequences of the data aggregation

process, several metrics were calculated based on the number
and average length of prescriptions/medications and diagnoses
records found within the native source data, and the number
and average length of Drug and Condition Eras within the
transformed data. These metrics were calculated for the overall
data, as well as for rofecoxib and acute myocardial infarction.

CDM performance statistics
To assess the capability of the CDM to support systematic drug
safety analyses, a program based on the CDM format was
written to analyze clinical cohorts. This program was executed
against each transformed database for two test cases: persons
exposed to the drug rofecoxib and persons with a diagnosis of
acute myocardial infarction. The program produces descriptive
statistics describing the persons comprising the cohort, including
a demographic summary and a summary of concomitant
medications occurring either during the use of the cohort drug
(rofecoxib), or at the same time as the occurrence of the cohort
condition (acute myocardial infarction) for each person within
that cohort.

MODEL VALIDATION
Data transformation summary
A total of 43 096 800 person records across both databases were
included in this analysis; of this total, 76.1% are PHARMetrics
records. The number of persons remained unchanged during the
transformation process and is the same in the native and
transformed data. The rofecoxib cohort comprises 1.07% of the
total PHARMetrics persons, and 1.82% of GE persons. For the
acute myocardial infarction cohort, 0.67% of PHARMetrics
persons and 0.52% of GE persons are included. Table 1 provides

Table 1 Person counts in native and transformed data for each
database

PHARMetrics GE

Number of persons 32818355 10278445

Number of persons in rofecoxib cohort 349929 (1.07%) 186763 (1.82%)

Number of persons in acute myocardial
infarction cohort

221437 (0.67%) 53063 (0.52%)
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summary statistics regarding the number of persons found
within each native and transformed source file.

Terminology Dictionary mapping
In total, 97.91% of PHARMetrics and 96.68% of GE drugs
associated with prescription or medication records found within
the Person data mapped to Concepts in our Terminology
Dictionary (instance annotations). This represents 79.39% of
PHARMetrics and 69.79% of GE unique Product Identifiers
found within the Drug Reference files (distinct annotations). A
review of the unmapped Product Identifiers reveals items such as
‘100 CC SYRINGE’ and ‘ATTENDS BRIEFS LARGE’ contained
within the medication files of the source data; it is appropriate
that these are not annotated for our purposes.

In both PHARMetrics and GE, multiple Vioxx Product Iden-
tifiers correctly annotate to the Drug Concept Vioxx within the
Terminology Dictionary and GE references to the generic
Product Identifier Rofecoxib correctly annotate to the Rofecoxib
NOC Concept.

For Conditions, 84.56% of PHARMetrics and 84.11% of GE
ICD-9 codes found within actual Person data (instance annota-
tions) annotate to MedDRA Concepts, representing 75.41% of
PHARMetrics and 85.47% of GE unique ICD-9 codes in the
Condition Reference files (distinct annotations). The ICD-9 E
and V codes account for approximately 12.01% and 13.80% of
unmapped, unique codes in the Condition Reference file for
PHARMetrics andGE, respectively, since there is no corresponding

concept within MedDRA for a majority of these health and
service indicator codes. The remaining 12.58% (PHARMetrics)
and 0.73% (GE) of unmapped, unique ICD-9 codes found in
the Condition Reference files are not represented in the
current ICD-9 coding dictionary; this may be due to tran-
scription errors during data entry or represent local modifica-
tions to the official ICD-9 coding scheme. These non-standard
and/or invalid ICD-9 codes represent only 0.16% and 0.11% of
the conditions found within the actual PHARMetrics and GE
Person data, respectively. All ICD-9 codes starting with ‘410’
appropriately annotated to the Condition Concept Acute
Myocardial Infarction.
Table 2 provides detailed statistics produced from the anno-

tated Terminology Dictionary.

Data aggregation
Data aggregation results for drugs are consistent with the
transformation rules which aggregate multiple occurrences of
the same Drug Concept within the allowable persistence
window of 30 days. The aggregation process reduces the overall
number of Person drug records in both databases. For PHAR-
Metrics, the total number of Drug Eras found in the transformed
data is only 43.11% of the total number of Person drug records
within the native data; for GE this number is 41.74%. The
reduction for rofecoxib Drug Eras is similar, at 35.84% and
40.58% of the number of native rofecoxib drug records for
PHARMetrics and GE, respectively.

Table 2 Standardized Terminology Dictionary mapping performance

Total Drug Concepts in
Terminology Dictionary

16269

PHARMetrics GE

Unique Product Identifiers in reference file 22454 28501

Distinct annotation proportion 79.39% (17827) 69.79% (19892)

Drug References in Person data 718590080 231492741

Instance annotation proportion 97.91% (703584362) 96.68% (223799256)

Source drug annotations to Terminology
Dictionary Drug Concepts Vioxx and rofecoxib

< Vioxx
– Vioxx 12 mg
– Vioxx 12 mg/5 ml
– Vioxx 25 mg
– Vioxx 25 mg/5 ml
– Vioxx 50 mg

< Vioxx
– Vioxx 12 mg
– Vioxx 12 mg/5 ml
– Vioxx 25 mg
– Vioxx 25 mg/5 ml
– Vioxx 50 mg

< Rofecoxib NOC
– Rofecoxib

Total Condition Concepts
in Terminology Dictionary

20666

PHARMetrics GE

Unique ICD-9 codes in reference file 29630 14972

Distinct annotation proportion 75.41% (22345) 85.47% (12797)

Unmapped, unique ICD-9 E and V codes 12.01% (3559) 13.80% (2066)

Unmapped, unique invalid codes 12.58% (3726) 0.73% (109)

Condition references in Person data 3627194305 81693914

Instance annotation proportion 84.56% (3067136827) 84.11% (68713570)

ICD-9 E and V codes in Person data 15.28% (554089276) 15.78% (12894228)

Invalid codes in Person data 0.16% (5968202) 0.11% (86116)

PHARMetrics GE

Source ICD-9 annotations
to Condition Terminology
Dictionary Concept ‘Acute
Myocardial Infarction‘ (AMI)

< 410 Acute Myocardial Infarction
< 4100# AMI Anterolateral Wall
< 4101# AMI Anterior Wall
< 4102# AMI Inferolateral Wall
< 4103# AMI Inferoposterior Wall
< 4104# AMI Inferior Wall
< 4105# AMI Lateral Wall
< 4106# AMI True Posterior Wall
< 4107# AMI Subendocardial
< 4108# Acute Myocardial Infarction NEC
< 4109# Acute Myocardial Infarction NOS

< 410 Acute Myocardial Infarction
< 410.0# AMI Anterolateral Wall
< 410.1# AMI Anterior Wall
< 410.2# AMI Inferolateral Wall
< 410.3# AMI Inferoposterior Wall
< 410.4# AMI Inferior Wall
< 410.5# AMI Lateral Wall
< 410.6# AMI True Posterior Wall
< 410.7# AMI Subendocardial
< 410.8# Acute Myocardial Infarction NEC
< 410.9# Acute Myocardial Infarction NOS
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Within the native data, the average number of drug records
per person is 21.9 in PHARMetrics and 22.52 in GE. The
aggregation process reduces this number to an average of 9.44
Drug Eras per person in PHARMetrics and 9.40 Drug Eras per
person in GE. The consistency of results across both database
types is also seen for rofecoxib, although the average number of
rofecoxib drug records per person is lower in both the native and
transformed data.

The average length of a Drug Era in the transformed data is
longer in GE than in PHARMetrics, although the length of
rofecoxib exposure in GE is only slightly longer. In PHAR-
Metrics, the overall average length of a transformed Drug Era is
2.55 times larger than the average length of a prescription record
in the native data (as measured by days supply); a rofecoxib Drug
Era is on average 2.91 times larger than a native prescription.
Length of exposure is not directly obtainable from the GE raw
data but requires a defined set of rules to infer utilization, such
as those applied here to enable estimation.

Condition Eras within the CDM represent the concept of an
‘episode of care’, which does not exist in the native data but is
constructed from diagnoses information during the trans-
formation process. The Condition aggregation process produces
different results between the two types of databases, reflecting
differences in the underlying motivation for recording a condi-
tion in each data source. For PHARMetrics the number of
Condition Eras in the transformed data is only 22.19% of the
number of Conditions found in the native data; for GE this
number is 75.64%, representing less aggregation of Condition
Eras. For Acute Myocardial Infarctions, these aggregation
reductions were consistent (Acute Myocardial Infarction
Condition Eras represent only 5.28% and 62.01% of the number
of original diagnoses of acute myocardial infarction found
within PHARMetrics and GE, respectively).

Within the native data sources, the average number of diag-
nosis records per person is 110.52 in PHARMetrics, and 7.95 in
GE. The aggregation process reduces this number to 24.53
Condition Eras per person for PHARMetrics and 6.01 Condition
Eras per person for GE. Condition aggregation also reduces the
number of Acute Myocardial Condition Eras per person in the
transformed data in both databases.

The average length of a Condition Era within the transformed
data is significantly longer in GE than in PHARMetrics, both in
the overall data and for Condition Eras representing acute
myocardial infarctions.

Table 3 presents the results of the data aggregation steps for
the entire database as well as for rofecoxib and acute myocardial
infarction.

CDM performance
The CDM performance metrics were produced from a single
analysis program executed against the transformed data in both
databases. Table 1 provides summary statistics produced by the
analysis program, regarding the total number of persons within
each transformed source file, as well as the count of persons in
the rofecoxib and acute myocardial infarction cohorts. The trans-
formed person counts match the statistics produced from the
native data.

Figures 4 and 5 provide a summary of the cohort demo-
graphics for the rofecoxib (figure 4) and acute myocardial infarction
(figure 5) cohorts compared to the database background for the
transformed GE and PHARMetrics data. Figures 6 and 7
compare the concomitant medications found within each
transformed database for the rofecoxib (figure 6) and acute
myocardial infarction (figure 7) cohorts. Although the underlying

data within each source database were recorded in different
ways and for different reasons, the CDM has allowed us to
execute one systematic analysis across both databases utilizing
standard definitions and assumptions and to present the results
in a consistent format enabling common interpretation.
These results highlight many similarities, as well as a few

differences, in the underlying populations captured by admin-
istrative claims versus electronic medical records databases. For
instance, 19.9% of the persons in the GE database are 65 years
old or older, while only 8.8% within the PHARMetrics database
are 65 or older. This is a characteristic of claims databases
reflecting the fact that the elderly population in the USA is
eligible for healthcare coverage provided by the government
versus private coverage. And, although the concomitant medi-
cations reported among comparable cohorts are strikingly
similar across both databases, one major discrepancyd
concomitant aspirin use in both cohortsdhighlights differences
in the underlying data capture purposes of the two data sources.
Over-the-counter medications such as aspirin are not typically
reimbursed by health insurance providers but their use is
recorded by healthcare providers in an electronic medical record
(EMR).

DISCUSSION
The results of this research confirm that a CDM is a feasible and
useful approach to enable systematic analyses of disparate
healthcare data sources, including administrative claims and
EMR data. We have successfully demonstrated the imple-
mentation of a Person Timeline CDM including Drug and
Condition Eras derived from prescriptions and diagnoses found
within the source data; this same methodology could be
extended to other types of healthcare encounters such as
procedures, laboratory results, and hospital visits. Although this
research demonstrated the successful use of this approach for
claims and EMR data, we believe that the approach is extensible
to other types of longitudinal healthcare data such as patient
and disease registry data. Because data from individual data
sources are normalized but not integrated, this approach is

Table 3 Impact of data aggregation on drugs and conditions

PHARMetrics GE

Native Transformed Native Transformed

Total persons 32818355 10278445

Drug aggregation

Total Drug Eras 718590080 309797580 231492741 96614637

Eras per person 21.90 9.44 22.52 9.4

Average exposure length 31 days 79 days NA 108 days

Rofecoxib

Total persons 349929 186763

Total rofecoxib Eras 1423273 510078 652234 264654

Eras per person 4.07 1.46 3.49 1.42

Average exposure length 34 days 99 days NA 102 days

Condition aggregation

Total Condition Eras 3627194305 804977267 81693914 61795940

Eras per person 110.52 24.53 7.95 6.01

Average Condition
Era length

NA 6 days NA 88 days

Acute myocardial infarction (AMI)

Total persons 221437 53063

Total AMI Eras 5547711 292980 85940 53290

AMI Eras per person 25.05 1.32 1.62 1.00

Average Condition
Era length

NA 11 days NA 175 days

658 J Am Med Inform Assoc 2010;17:652e662. doi:10.1136/jamia.2009.002477

Model formulation



viable for both a centralized data warehouse as well as
a distributed network of healthcare databases.

While each type of database captures healthcare encounters in
different ways, to different degrees, and for different underlying
reasons, the use of a CDM enforces a series of standardized,
transparent rules and assumptions to be applied during the data
preparation process rather than at analysis time. Transformation
rules embody assumptions that are unique to the underlying
data in each data source and an understanding of these rules is
critical to properly interpret any analysis performed on the data.
The consistent application of data transformation rules and
analysis procedures enables results to be meaningfully compa-
rable within the context of the underlying sources. Transforming
data into a common model requires a significant amount of
work and validation up front, however this work is re-used for
each analysis that utilizes the transformed data. This approach
is different from the current paradigm for the analysis of
observational data, where the assumptions and rules are generally
embedded within individual analysis programs and validated at

analysis time. It is important for source data experts to
participate in the development and validation of the trans-
formation rules for each source database to provide insights
that cannot be gleaned from the data itself. And the trans-
formation rules should be reviewed and evaluated each time
a new version of the source data is received to ensure that
they are still valid.
We believe the use of a standard Terminology Dictionary is

a critical component in the development of a CDM for drug
safety, and this approach is extensible to any codes found within
source observational data. The MedDRA was selected as the
initial reference condition terminology for our data model
because it is a standard vocabulary used by drug safety scientists
and the FDA and it comprises conditions that are drug adverse
events. Therefore, analyses can be done in a language that is
most familiar to our target user population. It is feasible that
vocabularies other than MedDRA and SNOMED-CT could be
selected as reference vocabularies; key factors for vocabulary
selection are a correct and uniform classification of drug and

Figure 4 Demographic summary of
rofecoxib cohort in each transformed
database.

Figure 5 Demographic summary of
the acute myocardial infarction (AMI)
cohort in each transformed database.
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condition concepts within the domain being studied and
comprehensive coverage relative to the source data. A key limi-
tation of utilizing a terminology dictionary is that the mapping
from the source data may not always be consistent with
a specific clinician’s expectations and should always be reviewed
prior to analysis. In addition, the selection of terminology
restricts any analysis performed to the concepts found within
that terminology. For example, the SNOMED-CT hierarchy we
selected for this research does not include concepts for drug
strength, so analyses by drug strength are not supported using
this data model. Because most source vocabularies change over
time, including a process for updating and versioning the
terminology dictionary is important for maintaining currency.

The descriptive analyses of cohorts of rofecoxib and myocar-
dial infarction patients described in this paper illustrate the use
of the CDM to enable systematic exploration of the similarities
and differences in patient characteristics recorded in disparate

databases. Apart from this project, the CDM described here has
also been utilized for systematic signal detection45 46 and risk
evaluation studies.47 48 These studies demonstrate that the
CDM is of sufficient fidelity to support drug safety research.
There are some additional considerations when performing an

analysis utilizing a CDM. The transformation rules and
assumptions applied to the drugs and conditions may not be
appropriate for all circumstances. For our research above we
selected a persistence window of 30 days for the aggregation of
both drugs and conditions. This is more appropriate for acute
conditions such as acute myocardial infarction. Depending on
the type of analysis being performed, it may be less appropriate
for a chronic condition such as a malignancy and would require
adjustment at analysis time. In addition, if the source database
contains data that are not supported by the data model, the
unsupported data will not be available for analysis using the
data model. For example, the CDM we used for our research did

Figure 6 Comparison of concomitant
medications within each transformed
database for the rofecoxib cohort.

Figure 7 Comparison of concomitant
medications occurring during acute
myocardial infarction Condition Eras,
within each transformed database.

660 J Am Med Inform Assoc 2010;17:652e662. doi:10.1136/jamia.2009.002477

Model formulation



not include laboratory results at the time of this analysis, so
performing analysis of an outcome defined by a particular
laboratory result would not be possible even though the native
GE database contains that information. The CDM was designed
to be extensible for this reasondas additional source databases
are incorporated the data model can be extended to include
coverage of additional types of data.

CONCLUSION
In conclusion, we have studied the real-world impact of utilizing
a CDM to support drug safety analyses and found that we were
able to successfully execute a systematic descriptive analysis of
cohorts across two disparate observational data sources using
a Person Timeline CDM developed for drug safety analysis. We
have reviewed the impact of the data transformation process on
the content of each source database and found that the charac-
teristics of transformed data from disparate databases are
consistent with underlying data capture motives and the trans-
formed data exhibit many similar characteristics despite the fact
that underlying data organization and formats are different.
Areas of future research include extending the model to incor-
porate additional types of healthcare encounters, incorporating
additional reference vocabularies into the Terminology Dictio-
nary, including additional sources of observational data such as
patient and disease registries, and further exploring analytic
techniques that are best suited for systematic pharmacovigilance.

The rofecoxibeacute myocardial infarction association, as well
as other knowndrugeoutcome pairs, have been used as exemplars
to illustrate the performance of analysis methods,45 47 49e52 but
substantial work is required to determine the appropriate
methods and selection of data sources that can meaningfully
contribute to a national active surveillance system.53 Several
efforts, includingOMOPand EU-ADR, should provide research to
inform this broader debate. In this paper we do not argue for
a particular analysis approach or for the use of either the PHAR-
Metrics or GE databases. However, we do assert that a CDM can
serve as a necessary foundation to facilitate the integration of the
appropriate databases and methods into a coordinated system.
The demonstration of transformingboth an administrative claims
and electronic health record database into this CDM offers
promise that data from other health plans, providers, and clinical
systems could also be implemented in either a centralized or
distributed network within a broader national active surveillance
system.The results of applying theCDMshowhowdifferences in
drug and condition coding can be successfully resolved, how
periods of persistent exposure and episodes of care for outcomes
can be systematically and consistently estimated, and how
population-level characteristics that could meaningfully impact
an analysis can be identified and defined through a standardized
process. This demonstration shows how a CDM can be a valuable
tool to significantly contribute to our collective ability to better
understand the effects of medical products.
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